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Abstract
A famous inverse problem posed by M Kac ‘Can one hear the shape of a
drum?’ is concerned with isospectrality of drums or planer billiards, and the
first counter example was constructed by Gordon, Webb and Wolpert (1992
Invent. Math. 110 1). Here we present pieces of numerical evidence showing
that ‘One can distinguish isospectral drums by measuring the scattering poles
of exterior Neumann problems’. This is based on the observation that the
Fredholm determinant appearing in the boundary element method admits a
factorization into interior and exterior parts.

PACS numbers: 05.45.Mt, 02.70.Pt, 03.65.Ge, 03.65.Nk

A famous question, ‘can one hear the shape of a drum?’, which was posed by Kac is the
inverse eigenvalue problem for the Helmholtz equation [1]. The question involves not only
the vibrating membrane fixed with a rigid frame, but also various physical systems obeying
the Helmholtz equation. In particular, quantum mechanical eigenvalue problems in bounded
two-dimensional domains, which are called quantum billiard problems, attract much attention
in conjunction with quantum manifestation of classical chaos. If the answer to the question
is yes, that is, one can hear the shape of a drum, then the set of quantum energy levels is
enough to specify the shape of a billiard table, and otherwise some information is missing.
Counter examples of similar questions had already been given prior to Kac’s; Milnor found
two flat 16-dimensional tori that are not congruent but are nevertheless isospectral [2]. Also
after Kac’s, it was also proved that there exist non-isometric but isospectral pairs on certain
Riemannian manifolds [3–5], and counter examples in the same sense were presented for
quantum graphs [6]. They employed Sunada’s theorem, which gives a sufficient condition
that pairs of Riemannian manifolds become isospectral [3]. However, Kac’s original question
is concerned with isospectrality of planar domains. The first counter example for Kac’s
question was constructed by Gordon, Webb and Wolpert [7], who gave a concrete example of
an isospectral but non-congruent pair of domains, and then 17 families of isospectral pairs of
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domains were found [8]. On the other hand, if we limit ourselves to a certain class of plane
domains, it is also known that the shape can be determined by its spectrum. In order to see
this aspect of the isospectral problem, we refer to the recent review by Zelditch [9].

As mentioned, the existence of isospectral pairs means that a set of eigenenergies is not
sufficient to determine the shape of the billiard boundary. This immediately invokes a question;
what is needed, if possible, to distinguish isospectral pairs? One of the meaningful settings
would be to limit ourselves to the situation where one can only know physically observable
quantities, just as eigenmodes of a drum can be observed or heard as sound.

Inside–outside duality of quantum billiard problems, which has been investigated in
several different ways [10–14], may provide us with a clue to approach this question. Though
there are several versions with respect to the boundary conditions imposed in each inside and
outside problem, and the assertions themselves are different, the results imply that eigenstates
for inside billiard tables are related to scattering states for outside problems. In this letter, we
will present that the shape of isospectral billiards can indeed be distinguished by observing
exterior Neumann scattering problems. Our idea originates from the fact that the Fredholm
determinant, which appears in the boundary integral method (BIM), admits a factorization
into interior and exterior contributions [13].

To be more precise, let us formulate the BIM in terms of the Fredholm theory [13, 15, 16].
Our present concern is the Helmholtz equation for a two-dimensional bounded domain �:

��(r) + k2�(r) = 0 (r ∈ �), (1)

with the homogeneous Dirichlet boundary condition:

�(r) = 0 (r ∈ ∂�). (2)

Writing a solution of (1) as the double-layer potential with a density ρ:

�(r) =
∫

∂�

∂G0(r, r(s); k)

∂νs

ρ(s) ds, (3)

one can express the boundary condition (2) as an integral equation:

ρ(t) −
∫

∂�

K(t, s; k)ρ(s) ds = 0, (4)

K(t, s; k) := −2
∂G0(r(t), r(s); k)

∂νs

, (5)

where νs denotes the outer unit vector at an arc length s measured along the boundary �.
G0(r, r

′; k) is a Green function for the free two-dimensional space, which we take

G0(r, r
′; k) := − i

4
H

(1)
0 (k|r − r ′|). (6)

If we limit ourselves to domains whose boundaries are of class C2, the integral kernel
K can be continuously extended to the whole of ∂� × ∂� by setting its diagonal as
K(t, t; k) = −κ(t)/2π, where κ(t) denotes the curvature of the boundary at the point r(t).
Then one can apply the Fredholm theory to the integral equation (4). As a result, the eigenvalues
of equations (1), (2) are completely characterized by the zeros of the Fredholm determinant:

d(k) := 1 +
∞∑

j=1

dj (k), (7)

where

dj (k) := (−1)j

j !

∫
∂�

ds1 · · ·
∫

∂�

dsj

∣∣∣∣∣∣∣
K(s1, s1; k) · · · K(s1, sj ; k)

...
. . .

...

K(sn, s1; k) · · · K(sn, sj ; k)

∣∣∣∣∣∣∣
. (8)
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Figure 1. Isospectral pairs of domains whose isospectrality is checked by the same transplantation
of eigenfunctions.

It was shown in [13] that the Fredholm determinant admits decomposition into the interior
and exterior contributions. More precisely, d(E) is factorized as

d(E) = d(0)dint(E)dext(E), (9)

where E = h̄2k2/2m. Here the interior term dint(E) gives Hadamard’s factorization:

dint(E) = ei m|�|E
2h̄2

(
m|∂�|E

2h̄2

)− m|�|E
2πh̄2

e− m|�|γ ′E
πh̄2

∞∏
n=1

(
1 − E

En

)
e

E
En , (10)

and {En}∞n=1 denote the eigenenergies of the interior Dirichlet problem. |∂�| and |�| represent
the perimeter and the area of the domain �, respectively. γ ′ is a constant determined by the
geometry of �. Furthermore, the analytic extension of the exterior term dext(E) to the second
Riemann sheet is connected to the S-matrix for the exterior Neumann scattering S by the
relation:

dII
ext(E) = e−i m|�|E

h̄2
dext(E)

det SII (E)
. (11)

Here SII denotes the analytic extension of the on-shell S-matrix S. Note that the second
Riemann sheet of E corresponds to the lower half plane of k. This factorization tells
us that the Fredholm determinant d(k), from which eigenenergies of the interior Dirichlet
problem are obtained, carries at the same time information on the cross section of the exterior
Neumann scattering problems as its zeros. Alternatively stated, eigenenergies are not sufficient
information to specify the Fredholm determinant d(k), which is uniquely determined if the
shape of the billiard boundary is given. This is suggestive for our problem addressed above:
even if the shape of a drum cannot be heard, one may distinguish isospectral drums by
measuring sound scattered by the drums [13].

We should remark that, in its strict sense, the argument based on the Fredholm theory
should be applied only for domains encircled by smooth curves. On the other hand, all
the isospectral pairs of planar billiards found so far do not satisfy this condition, and as
explained below this fact may be inevitable for isospectrality problems of planar billiards.
Figure 1 shows a pair of isospectral billiard tables, which was obtained as quotient orbifolds
of a common manifold by Gordon et al [7]. Although isospectrality of these domains was
originally proved with the aid of Sunada’s theorem, it can be more easily checked by the
method of transplantation of eigenfunctions [8]. The procedure of transplantation is just to
cut an eigenfunction f on a domain �1 into different pieces fi , a function defined on each
building block, and to paste them on the other domain �2. If the pasted function g satisfies a
proper boundary condition g = 0 on ∂�2, and also it is smoothly connected on all reflecting
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Figure 2. Convergence of discretized determinant d(n)(k). The shape of the billiard table is the
left-hand side unfolded domain shown in figure 1. Here m denotes the number of boundary points
lying on each edge of the building block. The total number of discretized points is given as n = 9m

where 9 is the number of sides of unfolded domain.

segments, we can say that g is an eigenfunction on �2. This procedure can be formulated
as a simple transformation between its adjacency matrices [17]. All the transplantable pairs
enumerated so far coincide with the examples obtained by group theoretical arguments [17].
An important fact to be stressed here is that finding isospectral pairs is therefore reduced to
a problem of combinatorics. All the counter examples of Kac’s problem ever known are,
to authors’ knowledge, domains which are obtained by gluing several copies of a building
block, and its isospectrality is checked by the transplantation method mentioned above. Such
domains necessarily have corners.

When a domain has a corner, the corresponding integral kernel K(t, s; k) appearing in
BIM behaves as |r(s) − r(t)|−1 around the corner. Thus, the integral equation (4) becomes
singular, and convergence of the infinite series (7) cannot be guaranteed. As far as the interior
problem is concerned, such a difficulty can be overcome by employing the wedge kernel [18],
but it is not sufficient in the present issue. So, it is not obvious whether or not the above
factorization formula holds as it stands for isospectral billiards. Nevertheless, the question
posed above still makes sense since eigenvalues of the interior Dirichlet problem and cross
sections or poles of S-matrix of Neumann scattering problems are well-defined objects for
unfolded domains, and they are still the solutions of the singular integral equation (4) [19, 20].

Here we will cope with this issue in the following: first, recall the discretized determinant,

d(n)(k) = det(δij − wjKij (k)), (12)

which is the determinant of the discretized version of our integral equation (4),

ρi −
n∑

j=1

wjKij (k)ρj = 0, (13)

where Kij (k) := K(ti, tj ; k). Here n is the number of discretized points on the boundary and
wj denote the weight factor for each boundary point r(tj ). In the case of the billiard table
with a smooth boundary, it was shown that limn→∞ d(n)(k) = d(k) by taking tj = |∂�|j/n

and wj = |∂�|/n.
On the other hand, if the boundary has corners, d(n)(k) tends to zero. Indeed as observed

in figure 2, even if we use Gauss–Legendre quadrature, which is a proper discretization to give
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Figure 3. Convergence of zeros of discretized determinant for the left-hand side billiard in
figure 1. Here δ(m) is the distance between a zero of d̃9m(k) and one of d̃9(m−1)(k) in the vicinity
of (a) k = 5.0 and (b) k = 1.2 − 0.28i.

a correct line integral [21], d(n)(k) tends to zero for all k as a function of n. Although its ratio is
algebraically slow, this makes d(n)(k) meaningless as n → ∞. However, it can also be found
in figure 2 that the exponent of algebraic decrease of d(n)(k) does not depend on k, implying
that d(n)(k) tends to zero uniformly. We can use this fact to introduce a regularization factor
for d(n)(k). That is, instead of computing d(n)(k), we evaluate

d̃(n)(k) := d(n)(k)

d(n)(0)
. (14)

In fact, as demonstrated in figure 3, we can see that zeros of d̃n(k), together with a proper
quadrature, show well convergent properties. In figure 3, we have plotted the distance between
a zero of d̃n(k) and one of d̃n−1(k) as a function of n. In the case of eigenvalues of the interior
problem, i.e., zeros of d̃n(k) very close to the real k axis, the location of zeros converges
exponentially, whereas zeros on the lower half plane converge algebraically slowly. However,
in either case, the precision thus determined is enough to distinguish the location of zeros
unambiguously.

As will be fully explained in [22], the regularization procedure (14) can be justified
rigorously. This is based on the decomposition of integral operator K(k), whose integral
kernel is K(s, t; k), into a singular part Ks and a compact one Kr(k) such that |Ks | is less than
unity [23]. Since the I − Ks has a bounded inverse provided by Neumann series, the singular
integral equation can be converted into a non-singular one:

ρ − (I − Ks)
−1Kr(k)ρ = 0. (15)

Denoting the Fredholm determinant for the integral equation (15) by D(k), one can easily
prove

lim
n→∞ d̃n(k) = D(k)

D(0)
. (16)

On the basis of these arguments to justify the BIM for billiard tables with corners,
we numerically compute the location of zeros of Fredholm determinants and the resonance
counting function for four types of isospectral billiards. Since isolated information will not be
so helpful to further understand the inside and outside relation, we examine several types of
isospectral pairs. The first one is a pair of unfolded domains whose fundamental building block
is a right-angled triangle. As mentioned already, we may replace a fundamental building block
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Figure 4. Left: distribution of zeros of the discretized determinant d̃n(k) for isospectral billiards.
The local minima of |d̃n(k)| are marked on the complex k plane. The number of discretized
boundary points are 30 for each edge. The error of location of zeros is smaller than the size of the
circles plotted. Right: log–log plot of the resonance counting function N(k), which is the number
of resonances in the sector {k′ ∈ C ||k′| < k, −π/2 < arg(k′) < −π/100}. The resonances are
counted in every annulus with the width 0.01. We also plot the mean resonance counting function
Ck2, (a) C = 3.66 for the upper domain and C = 3.46 for the lower, (b) C = 3.38 for the upper
and C = 3.31 for the lower, (c) C = 3.66 for the upper and C = 3.46 for the lower, (d ) C = 13.7
for the upper and C = 13.9 for the lower. These coefficients are determined by the nonlinear
least-squares Marquardt–Levenberg algorithm.

by an arbitrary shape as long as it has three reflecting sides about which unfolded domains
are constructed. So, the second example shown as figure 4(b) is a pair of unfolded domains
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Figure 5. (a) The optimal coefficient of k2 to fit Nπ/100(k) = {k′ ∈ C ||k′| < k, −π/2 <

arg(k′) < −π/100} restricted to 0 < k < kmax. The dashed, solid and dotted lines correspond to
the examples (a), (b) and (c) in figure 4, respectively. The circles and triangles denote upper and
lower domains in figure 4, respectively.

composed of a different building block. The third one is the case in which the connection rule
to give unfolded domains differs from the former two cases. As seen in Buser’s table [8] and
also in the table of transplantable pairs [17], even if one fixes the number of building blocks,
there sometimes exist several different unfolded patterns, all of which give isospectral pairs.
In figure 4(c) we have tested such a pair. The final one shown in figure 4(d ) is an example of
the homophonic pair. We say the two domains are homophonic if there exists a point in the
domain such that the values of all the eigenfunctions are the same. As a result, if one exactly
hits this particular point, the sound of two drums is completely the same. Such a pair first
appears when the number of unfolded domains is 21 [8].

All the examples examined here show that complex zeros of the Fredholm determinant are
different whereas zeros on the real axis are the same; this naturally leads us to the conjecture
that an isospectral pair can be distinguished by measuring the poles of S-matrix or the cross
section of exterior Neumann scattering.

As can also be seen in figure 4, the number of resonances whose absolute value is less
than k increases in proportion to k2. The results are consistent with the upper bounds of the
resonance counting function for the Dirichlet boundary condition [24], although their results
concern that for the Dirichlet boundary condition.

We note that the resonance counting function carries further information; as seen in
figure 5, the optimal coefficients Cδ,k of k2 to fit Nδ(k) differ from each other when we
compare isospectral pairs. Here, the resonance counting function in a fixed-angled sector is
defined as Nδ(k) = {k′ ∈ C ||k′| < k,−π/2 < arg(k′) < −δ}. The results look inconsistent
with the Weyl-type formula that was shown for exterior non-trapping domains [25]. However,
this is not necessarily the case, since Nδ(k) in figures 4 and 5 plots only a part of the resonances
that are located in the sector with the central angle δ. Thus, it is possible that Weyl-type formula
is recovered if we sweep the semicircle in the lower half plane. In other words, Nδ(k) can
have δ dependence.

Another issue we should further examine in relation to it is the asymptotic behaviour
of the mean resonance function in the case of trapping domains appearing in figures 4(a),
(c) and (d ). This is because rigorous estimations provided in [24, 25] are concerned only with
non-trapping domains. To the authors’ knowledge, there are no proofs claiming that the mean
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resonance function for trapping domains obeys an analogous Weyl-type formula. So, if this
is the case, it would be interesting to see such a discrepancy in the mean resonance counting
function in terms of semi-classical approximation of the Fredholm determinant [26]. In any
case, the result presented in figure 5 needs further investigations and should be reconsidered in
a future publication. Developments of more efficient numerical algorithms are highly desired
to this end.
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